Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Algorithms Mol Biol ; 19(1): 13, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493130

RESUMO

MOTIVATION: Many bioinformatics problems can be approached as optimization or controlled sampling tasks, and solved exactly and efficiently using Dynamic Programming (DP). However, such exact methods are typically tailored towards specific settings, complex to develop, and hard to implement and adapt to problem variations. METHODS: We introduce the Infrared framework to overcome such hindrances for a large class of problems. Its underlying paradigm is tailored toward problems that can be declaratively formalized as sparse feature networks, a generalization of constraint networks. Classic Boolean constraints specify a search space, consisting of putative solutions whose evaluation is performed through a combination of features. Problems are then solved using generic cluster tree elimination algorithms over a tree decomposition of the feature network. Their overall complexities are linear on the number of variables, and only exponential in the treewidth of the feature network. For sparse feature networks, associated with low to moderate treewidths, these algorithms allow to find optimal solutions, or generate controlled samples, with practical empirical efficiency. RESULTS: Implementing these methods, the Infrared software allows Python programmers to rapidly develop exact optimization and sampling applications based on a tree decomposition-based efficient processing. Instead of directly coding specialized algorithms, problems are declaratively modeled as sets of variables over finite domains, whose dependencies are captured by constraints and functions. Such models are then automatically solved by generic DP algorithms. To illustrate the applicability of Infrared in bioinformatics and guide new users, we model and discuss variants of bioinformatics applications. We provide reimplementations and extensions of methods for RNA design, RNA sequence-structure alignment, parsimony-driven inference of ancestral traits in phylogenetic trees/networks, and design of coding sequences. Moreover, we demonstrate multidimensional Boltzmann sampling. These applications of the framework-together with our novel results-underline the practical relevance of Infrared. Remarkably, the achieved complexities are typically equivalent to the ones of specialized algorithms and implementations. AVAILABILITY: Infrared is available at https://amibio.gitlabpages.inria.fr/Infrared with extensive documentation, including various usage examples and API reference; it can be installed using Conda or from source.

2.
Algorithms Mol Biol ; 18(1): 18, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041153

RESUMO

Although RNA secondary structure prediction is a textbook application of dynamic programming (DP) and routine task in RNA structure analysis, it remains challenging whenever pseudoknots come into play. Since the prediction of pseudoknotted structures by minimizing (realistically modelled) energy is NP-hard, specialized algorithms have been proposed for restricted conformation classes that capture the most frequently observed configurations. To achieve good performance, these methods rely on specific and carefully hand-crafted DP schemes. In contrast, we generalize and fully automatize the design of DP pseudoknot prediction algorithms. For this purpose, we formalize the problem of designing DP algorithms for an (infinite) class of conformations, modeled by (a finite number of) fatgraphs, and automatically build DP schemes minimizing their algorithmic complexity. We propose an algorithm for the problem, based on the tree-decomposition of a well-chosen representative structure, which we simplify and reinterpret as a DP scheme. The algorithm is fixed-parameter tractable for the treewidth tw of the fatgraph, and its output represents a [Formula: see text] algorithm (and even possibly [Formula: see text] in simple energy models) for predicting the MFE folding of an RNA of length n. We demonstrate, for the most common pseudoknot classes, that our automatically generated algorithms achieve the same complexities as reported in the literature for hand-crafted schemes. Our framework supports general energy models, partition function computations, recursive substructures and partial folding, and could pave the way for algebraic dynamic programming beyond the context-free case.

3.
Bioinformatics ; 39(Supplement_1): i1-i2, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387153
4.
BMC Bioinformatics ; 23(Suppl 8): 424, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241988

RESUMO

BACKGROUND: RNA deleterious point mutation prediction was previously addressed with programs such as RNAmute and MultiRNAmute. The purpose of these programs is to predict a global conformational rearrangement of the secondary structure of a functional RNA molecule, thereby disrupting its function. RNAmute was designed to deal with only single point mutations in a brute force manner, while in MultiRNAmute an efficient approach to deal with multiple point mutations was developed. The approach used in MultiRNAmute is based on the stabilization of the suboptimal RNA folding prediction solutions and/or destabilization of the optimal folding prediction solution of the wild type RNA molecule. The MultiRNAmute algorithm is significantly more efficient than the brute force approach in RNAmute, but in the case of long sequences and large m-point mutation sets the MultiRNAmute becomes exponential in examining all possible stabilizing and destabilizing mutations. RESULTS: An inherent limitation in the RNAmute and MultiRNAmute programs is their ability to predict only substitution mutations, as these programs were not designed to work with deletion or insertion mutations. To address this limitation we herein develop a very fast algorithm, based on suboptimal folding solutions, to predict a predefined number of multiple point deleterious mutations as specified by the user. Depending on the user's choice, each such set of mutations may contain combinations of deletions, insertions and substitution mutations. Additionally, we prove the hardness of predicting the most deleterious set of point mutations in structural RNAs. CONCLUSIONS: We developed a method that extends our previous MultiRNAmute method to predict insertion and deletion mutations in addition to substitutions. The additional advantage of the new method is its efficiency to find a predefined number of deleterious mutations. Our new method may be exploited by biologists and virologists prior to site-directed mutagenesis experiments, which involve indel mutations along with substitutions. For example, our method may help to investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary structure.


Assuntos
Mutação INDEL , RNA , Mutação , Mutação Puntual , RNA/química , RNA/genética , Análise de Sequência de RNA
5.
Algorithms Mol Biol ; 17(1): 8, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366923

RESUMO

Hard graph problems are ubiquitous in Bioinformatics, inspiring the design of specialized Fixed-Parameter Tractable algorithms, many of which rely on a combination of tree-decomposition and dynamic programming. The time/space complexities of such approaches hinge critically on low values for the treewidth tw of the input graph. In order to extend their scope of applicability, we introduce the TREE-DIET problem, i.e. the removal of a minimal set of edges such that a given tree-decomposition can be slimmed down to a prescribed treewidth [Formula: see text]. Our rationale is that the time gained thanks to a smaller treewidth in a parameterized algorithm compensates the extra post-processing needed to take deleted edges into account. Our core result is an FPT dynamic programming algorithm for TREE-DIET, using [Formula: see text] time and space. We complement this result with parameterized complexity lower-bounds for stronger variants (e.g., NP-hardness when [Formula: see text] or [Formula: see text] is constant). We propose a prototype implementation for our approach which we apply on difficult instances of selected RNA-based problems: RNA design, sequence-structure alignment, and search of pseudoknotted RNAs in genomes, revealing very encouraging results. This work paves the way for a wider adoption of tree-decomposition-based algorithms in Bioinformatics.

6.
Noncoding RNA ; 7(4)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34842779

RESUMO

As more sequencing data accumulate and novel puzzling genetic regulations are discovered, the need for accurate automated modeling of RNA structure increases. RNA structure modeling from chemical probing experiments has made tremendous progress, however accurately predicting large RNA structures is still challenging for several reasons: RNA are inherently flexible and often adopt many energetically similar structures, which are not reliably distinguished by the available, incomplete thermodynamic model. Moreover, computationally, the problem is aggravated by the relevance of pseudoknots and non-canonical base pairs, which are hardly predicted efficiently. To identify nucleotides involved in pseudoknots and non-canonical interactions, we scrutinized the SHAPE reactivity of each nucleotide of the 188 nt long lariat-capping ribozyme under multiple conditions. Reactivities analyzed in the light of the X-ray structure were shown to report accurately the nucleotide status. Those that seemed paradoxical were rationalized by the nucleotide behavior along molecular dynamic simulations. We show that valuable information on intricate interactions can be deduced from probing with different reagents, and in the presence or absence of Mg2+. Furthermore, probing at increasing temperature was remarkably efficient at pointing to non-canonical interactions and pseudoknot pairings. The possibilities of following such strategies to inform structure modeling software are discussed.

7.
Methods Mol Biol ; 2284: 1-15, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33835434

RESUMO

RNA design addresses the need to build novel RNAs, e.g., for biotechnological applications in synthetic biology, equipped with desired functional properties. This chapter describes how to use the software RNARedPrint for the de novo rational design of RNA sequences adopting one or several desired secondary structures. Depending on the application, these structures could represent alternate configurations or kinetic pathways. The software makes such design convenient and sufficiently fast for practical routine, where it even overcomes notorious problems in the application of RNA design, e.g., it maintains realistic GC content.


Assuntos
RNA/síntese química , Software , Biologia Sintética/métodos , Algoritmos , Animais , Composição de Bases , Sequência de Bases , Humanos , Conformação de Ácido Nucleico , RNA/química , Riboswitch/fisiologia , Interface Usuário-Computador
8.
BMC Cancer ; 21(1): 394, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845808

RESUMO

BACKGROUND: RNA-seq data are increasingly used to derive prognostic signatures for cancer outcome prediction. A limitation of current predictors is their reliance on reference gene annotations, which amounts to ignoring large numbers of non-canonical RNAs produced in disease tissues. A recently introduced kind of transcriptome classifier operates entirely in a reference-free manner, relying on k-mers extracted from patient RNA-seq data. METHODS: In this paper, we set out to compare conventional and reference-free signatures in risk and relapse prediction of prostate cancer. To compare the two approaches as fairly as possible, we set up a common procedure that takes as input either a k-mer count matrix or a gene expression matrix, extracts a signature and evaluates this signature in an independent dataset. RESULTS: We find that both gene-based and k-mer based classifiers had similarly high performances for risk prediction and a markedly lower performance for relapse prediction. Interestingly, the reference-free signatures included a set of sequences mapping to novel lncRNAs or variable regions of cancer driver genes that were not part of gene-based signatures. CONCLUSIONS: Reference-free classifiers are thus a promising strategy for the identification of novel prognostic RNA biomarkers.


Assuntos
Biomarcadores Tumorais , Neoplasias da Próstata/genética , Neoplasias da Próstata/mortalidade , Transcriptoma , Algoritmos , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/patologia , Recidiva , Reprodutibilidade dos Testes , Aprendizado de Máquina Supervisionado
9.
Mol Cell ; 81(10): 2135-2147.e5, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33713597

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global pandemic. CoVs are known to generate negative subgenomes (subgenomic RNAs [sgRNAs]) through transcription-regulating sequence (TRS)-dependent template switching, but the global dynamic landscapes of coronaviral subgenomes and regulatory rules remain unclear. Here, using next-generation sequencing (NGS) short-read and Nanopore long-read poly(A) RNA sequencing in two cell types at multiple time points after infection with SARS-CoV-2, we identified hundreds of template switches and constructed the dynamic landscapes of SARS-CoV-2 subgenomes. Interestingly, template switching could occur in a bidirectional manner, with diverse SARS-CoV-2 subgenomes generated from successive template-switching events. The majority of template switches result from RNA-RNA interactions, including seed and compensatory modes, with terminal pairing status as a key determinant. Two TRS-independent template switch modes are also responsible for subgenome biogenesis. Our findings reveal the subgenome landscape of SARS-CoV-2 and its regulatory features, providing a molecular basis for understanding subgenome biogenesis and developing novel anti-viral strategies.


Assuntos
COVID-19 , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , RNA Viral , SARS-CoV-2 , Animais , COVID-19/genética , COVID-19/metabolismo , Células CACO-2 , Chlorocebus aethiops , Humanos , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Células Vero
10.
Bioinformatics ; 37(15): 2126-2133, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-33538792

RESUMO

MOTIVATION: Predicting the folding dynamics of RNAs is a computationally difficult problem, first and foremost due to the combinatorial explosion of alternative structures in the folding space. Abstractions are therefore needed to simplify downstream analyses, and thus make them computationally tractable. This can be achieved by various structure sampling algorithms. However, current sampling methods are still time consuming and frequently fail to represent key elements of the folding space. METHOD: We introduce RNAxplorer, a novel adaptive sampling method to efficiently explore the structure space of RNAs. RNAxplorer uses dynamic programming to perform an efficient Boltzmann sampling in the presence of guiding potentials, which are accumulated into pseudo-energy terms and reflect similarity to already well-sampled structures. This way, we effectively steer sampling toward underrepresented or unexplored regions of the structure space. RESULTS: We developed and applied different measures to benchmark our sampling methods against its competitors. Most of the measures show that RNAxplorer produces more diverse structure samples, yields rare conformations that may be inaccessible to other sampling methods and is better at finding the most relevant kinetic traps in the landscape. Thus, it produces a more representative coarse graining of the landscape, which is well suited to subsequently compute better approximations of RNA folding kinetics. AVAILABILITYAND IMPLEMENTATION: https://github.com/ViennaRNA/RNAxplorer/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

11.
Nucleic Acids Res ; 48(15): 8276-8289, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32735675

RESUMO

The manual production of reliable RNA structure models from chemical probing experiments benefits from the integration of information derived from multiple protocols and reagents. However, the interpretation of multiple probing profiles remains a complex task, hindering the quality and reproducibility of modeling efforts. We introduce IPANEMAP, the first automated method for the modeling of RNA structure from multiple probing reactivity profiles. Input profiles can result from experiments based on diverse protocols, reagents, or collection of variants, and are jointly analyzed to predict the dominant conformations of an RNA. IPANEMAP combines sampling, clustering and multi-optimization, to produce secondary structure models that are both stable and well-supported by experimental evidences. The analysis of multiple reactivity profiles, both publicly available and produced in our study, demonstrates the good performances of IPANEMAP, even in a mono probing setting. It confirms the potential of integrating multiple sources of probing data, informing the design of informative probing assays.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Software , Amebozoários/genética , Benchmarking , Conjuntos de Dados como Assunto , Mutação , RNA/genética
12.
J Math Biol ; 80(5): 1353-1388, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32060618

RESUMO

Given a set of species whose evolution is represented by a species tree, a gene family is a group of genes having evolved from a single ancestral gene. A gene family evolves along the branches of a species tree through various mechanisms, including-but not limited to-speciation ([Formula: see text]), gene duplication ([Formula: see text]), gene loss ([Formula: see text]), and horizontal gene transfer ([Formula: see text]). The reconstruction of a gene tree representing the evolution of a gene family constrained by a species tree is an important problem in phylogenomics. However, unlike in the multispecies coalescent evolutionary model that considers only speciation and incomplete lineage sorting events, very little is known about the search space for gene family histories accounting for gene duplication, gene loss and horizontal gene transfer (the [Formula: see text]-model). In this work, we introduce the notion of evolutionary histories defined as a binary ordered rooted tree describing the evolution of a gene family, constrained by a species tree in the [Formula: see text]-model. We provide formal grammars describing the set of all evolutionary histories that are compatible with a given species tree, whether it is ranked or unranked. These grammars allow us, using either analytic combinatorics or dynamic programming, to efficiently compute the number of histories of a given size, and also to generate random histories of a given size under the uniform distribution. We apply these tools to obtain exact asymptotics for the number of gene family histories for two species trees, the rooted caterpillar and complete binary tree, as well as estimates of the range of the exponential growth factor of the number of histories for random species trees of size up to 25. Our results show that including horizontal gene transfers induce a dramatic increase of the number of evolutionary histories. We also show that, within ranked species trees, the number of evolutionary histories in the [Formula: see text]-model is almost independent of the species tree topology. These results establish firm foundations for the development of ensemble methods for the prediction of reconciliations.


Assuntos
Evolução Molecular , Modelos Genéticos , Algoritmos , Biologia Computacional , Simulação por Computador , Deleção de Genes , Duplicação Gênica , Transferência Genética Horizontal , Especiação Genética , Conceitos Matemáticos , Família Multigênica , Filogenia
13.
Bioinformatics ; 36(9): 2920-2922, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971575

RESUMO

SUMMARY: RNA design has conceptually evolved from the inverse RNA folding problem. In the classical inverse RNA problem, the user inputs an RNA secondary structure and receives an output RNA sequence that folds into it. Although modern RNA design methods are based on the same principle, a finer control over the resulting sequences is sought. As an important example, a substantial number of non-coding RNA families show high preservation in specific regions, while being more flexible in others and this information should be utilized in the design. By using the additional information, RNA design tools can help solve problems of practical interest in the growing fields of synthetic biology and nanotechnology. incaRNAfbinv 2.0 utilizes a fragment-based approach, enabling a control of specific RNA secondary structure motifs. The new version allows significantly more control over the general RNA shape, and also allows to express specific restrictions over each motif separately, in addition to other advanced features. AVAILABILITY AND IMPLEMENTATION: incaRNAfbinv 2.0 is available through a standalone package and a web-server at https://www.cs.bgu.ac.il/incaRNAfbinv. Source code, command-line and GUI wrappers can be found at https://github.com/matandro/RNAsfbinv. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA , Software , Motivos de Nucleotídeos , RNA/genética , Dobramento de RNA , Análise de Sequência de RNA
14.
BMC Bioinformatics ; 20(1): 209, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023239

RESUMO

BACKGROUND: The design of multi-stable RNA molecules has important applications in biology, medicine, and biotechnology. Synthetic design approaches profit strongly from effective in-silico methods, which substantially reduce the need for costly wet-lab experiments. RESULTS: We devise a novel approach to a central ingredient of most in-silico design methods: the generation of sequences that fold well into multiple target structures. Based on constraint networks, our approach supports generic Boltzmann-weighted sampling, which enables the positive design of RNA sequences with specific free energies (for each of multiple, possibly pseudoknotted, target structures) and GC-content. Moreover, we study general properties of our approach empirically and generate biologically relevant multi-target Boltzmann-weighted designs for an established design benchmark. Our results demonstrate the efficacy and feasibility of the method in practice as well as the benefits of Boltzmann sampling over the previously best multi-target sampling strategy-even for the case of negative design of multi-stable RNAs. Besides empirically studies, we finally justify the algorithmic details due to a fundamental theoretic result about multi-stable RNA design, namely the #P-hardness of the counting of designs. CONCLUSION: introduces a novel, flexible, and effective approach to multi-target RNA design, which promises broad applicability and extensibility. Our free software is available at: https://github.com/yannponty/RNARedPrint Supplementary data are available online.


Assuntos
RNA/química , Interface Usuário-Computador , Algoritmos , Composição de Bases , Modelos Teóricos , Conformação de Ácido Nucleico
15.
J Comput Biol ; 26(1): 16-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30383444

RESUMO

Let \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\usepackage{upgreek}\pagestyle{empty}\DeclareMathSizes{10}{9}{7}{6}\begin{document} $${{ \cal S}_n}$$ \end{document} denote the network of all RNA secondary structures of length n, in which undirected edges exist between structures s, t such that t is obtained from s by the addition, removal, or shift of a single base pair. Using context-free grammars, generating functions, and complex analysis, we show that the asymptotic average degree is \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\usepackage{upgreek}\pagestyle{empty}\DeclareMathSizes{10}{9}{7}{6}\begin{document} $$O ( n )$$ \end{document} , and that the asymptotic clustering coefficient is \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\usepackage{upgreek}\pagestyle{empty}\DeclareMathSizes{10}{9}{7}{6}\begin{document} $$O ( 1 / n )$$ \end{document} , from which it follows that the family \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\usepackage{upgreek}\pagestyle{empty}\DeclareMathSizes{10}{9}{7}{6}\begin{document} $${{ \cal S}_n}$$ \end{document} , \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\usepackage{upgreek}\pagestyle{empty}\DeclareMathSizes{10}{9}{7}{6}\begin{document} $$n = 1 , 2 , 3 , \ldots$$ \end{document} of secondary structure networks is not small world.


Assuntos
RNA/química , Algoritmos , Modelos Moleculares , Conformação de Ácido Nucleico
16.
PLoS Comput Biol ; 14(3): e1005992, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29543809

RESUMO

We present a new educational initiative called Meet-U that aims to train students for collaborative work in computational biology and to bridge the gap between education and research. Meet-U mimics the setup of collaborative research projects and takes advantage of the most popular tools for collaborative work and of cloud computing. Students are grouped in teams of 4-5 people and have to realize a project from A to Z that answers a challenging question in biology. Meet-U promotes "coopetition," as the students collaborate within and across the teams and are also in competition with each other to develop the best final product. Meet-U fosters interactions between different actors of education and research through the organization of a meeting day, open to everyone, where the students present their work to a jury of researchers and jury members give research seminars. This very unique combination of education and research is strongly motivating for the students and provides a formidable opportunity for a scientific community to unite and increase its visibility. We report on our experience with Meet-U in two French universities with master's students in bioinformatics and modeling, with protein-protein docking as the subject of the course. Meet-U is easy to implement and can be straightforwardly transferred to other fields and/or universities. All the information and data are available at www.meet-u.org.


Assuntos
Biologia Computacional/educação , Biologia Computacional/métodos , Pesquisa/educação , Humanos , Projetos de Pesquisa , Estudantes , Universidades
17.
Brief Bioinform ; 19(2): 350-358, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049135

RESUMO

Computational programs for predicting RNA sequences with desired folding properties have been extensively developed and expanded in the past several years. Given a secondary structure, these programs aim to predict sequences that fold into a target minimum free energy secondary structure, while considering various constraints. This procedure is called inverse RNA folding. Inverse RNA folding has been traditionally used to design optimized RNAs with favorable properties, an application that is expected to grow considerably in the future in light of advances in the expanding new fields of synthetic biology and RNA nanostructures. Moreover, it was recently demonstrated that inverse RNA folding can successfully be used as a valuable preprocessing step in computational detection of novel noncoding RNAs. This review describes the most popular freeware programs that have been developed for such purposes, starting from RNAinverse that was devised when formulating the inverse RNA folding problem. The most recently published ones that consider RNA secondary structure as input are antaRNA, RNAiFold and incaRNAfbinv, each having different features that could be beneficial to specific biological problems in practice. The various programs also use distinct approaches, ranging from ant colony optimization to constraint programming, in addition to adaptive walk, simulated annealing and Boltzmann sampling. This review compares between the various programs and provides a simple description of the various possibilities that would benefit practitioners in selecting the most suitable program. It is geared for specific tasks requiring RNA design based on input secondary structure, with an outlook toward the future of RNA design programs.


Assuntos
Algoritmos , Conformação de Ácido Nucleico , Dobramento de RNA , RNA/química , Software , Animais , Biologia Computacional/métodos , Humanos , Modelos Moleculares
18.
Bioinformatics ; 33(14): i283-i292, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28882001

RESUMO

MOTIVATION: Kinetics is key to understand many phenomena involving RNAs, such as co-transcriptional folding and riboswitches. Exact out-of-equilibrium studies induce extreme computational demands, leading state-of-the-art methods to rely on approximated kinetics landscapes, obtained using sampling strategies that strive to generate the key landmarks of the landscape topology. However, such methods are impeded by a large level of redundancy within sampled sets. Such a redundancy is uninformative, and obfuscates important intermediate states, leading to an incomplete vision of RNA dynamics. RESULTS: We introduce RNANR, a new set of algorithms for the exploration of RNA kinetics landscapes at the secondary structure level. RNANR considers locally optimal structures, a reduced set of RNA conformations, in order to focus its sampling on basins in the kinetic landscape. Along with an exhaustive enumeration, RNANR implements a novel non-redundant stochastic sampling, and offers a rich array of structural parameters. Our tests on both real and random RNAs reveal that RNANR allows to generate more unique structures in a given time than its competitors, and allows a deeper exploration of kinetics landscapes. AVAILABILITY AND IMPLEMENTATION: RNANR is freely available at https://project.inria.fr/rnalands/rnanr . CONTACT: yann.ponty@lix.polytechnique.fr.


Assuntos
Biologia Computacional/métodos , Conformação de Ácido Nucleico , RNA/metabolismo , Riboswitch , Software , Termodinâmica , Algoritmos , Cinética , RNA/química , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...